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1. INTRODUCTION 
     Lighthill [1] obtained the solutions for unsteady 

forced convection flow past a plate and circular cylinder 

with small amplitude oscillation. Ackerberg studied the 

boundary layer flow on a semi infinite plate due to small 

fluctuations in the magnitude of free stream velocity. 

[2]-[13] discussed the convective boundary layer flow 
along a vertical plate when the plate is subject to 

transverse mechanical vibration analytically as well as 

numerically. Steady MHD forced and free convection 

flow past a vertical plate has been studied widely because 

of its importance in aeronautics, missile aerodynamics 

and in some other engineering applications. With all 

these wide range of applications [14]-[23] studied the 

MHD boundary layer uniform flow past a magnetized 

and non-magnetized plate for different values of 

magnetic force parameter S and magnetic Prandtl number 

Pm. The two dimensional steady boundary layer flow 
and heat transfer of electrically conducting, viscous, 

incompressible fluid past a semi-infinite plate in the 

presence of uniform magnetic field has been investigated 

by [24]-[25]. Ingham [26] studied the boundary layer 

flow of electrically conducting gas with an aligned 

magnetic field on a semi-infinite flat plate at large 

distances from the plate placed at zero incidence. 

       

 

 

Unsteady forced convection boundary layer flow 

through saturated porous medium has been 

carried out by Hossain and Banu [27]. Later, this  

 

model has been extended Hossain et al [28] to an 

unsteady free convection flow of viscous 
incompressible and electrically conducting fluid 

along a vertical plate in the presence of a variable  

 

transverse magnetic field when the surface 

temperature of the plate oscillates with small 

amplitude. The natural convection boundary layer 

flow of viscous incompressible fluid along a 

vertical plate has been discussed by Roy and 

Hossain [30]. Effect of small amplitude 

oscillation in the wall temperature on the natural 

convection flow from a cylinder of elliptic cross 
section has been investigated by Jaman and 

Hossain [31]. 

     The hydromagnetic mixed convection flow of 

viscous incompressible fluid past a magnetized 

vertical porous plate has been discussed by 

Ashraf and Hossain [32]. Recently, Ashraf et al. 

[33] studied the effect of thermal 

radiation-conduction on hydromag- netic mixed 

NUMERICAL SIMULATION OF 

MAGNETOHYDRODYNAMICS MIXED CONVECTION 

FLOW WHEN THE MAGNETIC FIELD, FREE STREAM 

VELOCITY AND SURFACE TEMPERATURE OSCILLATE 

SIMULTANEOUSLY 

Muhammad Ashraf, S. Asghar and Md. Anwar Hossain  

Department of Mathematics, COMSATS Institute of Information Technology  

 Islamabad,Pakistan 

 

 
 
ABSTRACT      
This paper tries to apply the finite difference method along with perturbation technique to solve the 

nonlinear two dimensional unsteady coupled equations. To remove the difficulties in solving the coupled 

equations primitive variable formulation (PVF) for finite difference method and stream function 

formulation (SFF) for perturbation technique is proposed. The physical phenomena describe the 

hydromagnetic mixed convection flow when the magnetic field, free stream velocity and surface 

temperature oscillate in magnitude simultaneously. For this purpose different values of mixed convection 

parameter , Prandtl number, Pr, the magnetic Prandtl number Pm, and the magnetic force parameter S are 

discussed in terms of amplitudes and phases angle of shear stress, rate of heat transfer and current density. 

The effects of these parameters on the amplitude of oscillation of the transient shear stress, rate of heat and 

current density are also discussed. 

 

Keywords: Fluctuating flow, Magnetohydrodynamic, Mixed Convection, Magnetized Plate, Current 

Density 

 



© ICME2011  FL-047 2 

convection flow of viscous income- pressible 

fluid past a magnetized plate. The above literature 

survey proposed that the unsteady hydro- 

magnetic mixed convection flow past a 

magnetized vertical heated plate, when the 

magnetic field, free stream velocity and surface 

temperature oscillates in magnitude have not yet 

been studied. In view of above literature survey, 

we purpose the study of unsteady hydromagnetic 
mixed convection flow past a magnetized surface 

and highlights the effects of varying the mixed 

convection parameter , the Prandtl number, Pr, 
the magnetic Prandtl number Pm, and the 

magnetic force parameter S in terms of 

amplitudes and phases angle of shear stress, rate 

of heat transfer and current density. 

 
2. BASIC EQUATIONS AND FLOW 
CONFIGURATION 
     We consider a unsteady two-dimensional 

manetohydro- dynamic mixed convection flow of an 

electrically conducting, viscous and incompressible fluid 
past a heated and magnetized vertical plate by including 

radiation effects in the energy equation. The flow 

configuration and the co-ordinate system is shown in Fig. 

1. We have taken x-axis along the surface and y-axis is 

normal to it. In this figure M, T and H represent 
momentum, thermal and magnetic boundary layer 

thicknesses. Further more we assume that the  surface 

temperature, magnetic field and the free stream   are 

oscillating with time about constant means. The 

momentum, magnetic, and energy flow field with the 

influence of radiation effects are now governed by the 

following dimensionless equations. 

 
 
Fig 1. The coordinate system and flow configuration 

 

     which describe the unsteady hydromagnetic 

mixed convection flow past a vertical plate. The 

boundary layer equations are 
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The boundary conditions are taken as form 
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     Here 0 0( ), ( )H     are magnetic field intensity 

and surface temperature oscillation which are 
given as below:  
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       In above expression it is assumed that  is l 

amplitude of oscillation of free stream velocity, 

surface, magnetic intensity and surface 

temperature which id very small than unity. 

     Knowing the values of the dependent variables 
from (1)-(5), one can obtain the values of values 

of shear stress m, current density Jm and the rate 

of heat transfer  qm from the following relations.   
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      Since  the amplitude of oscillation of free stream 
velocity, surface, magnetic intensity and surface 

temperature is small one can consider the solution of the 

equations (1)-(5) together with boundary conditions (6)  

to be of the following form in terms of steady and 

fluctuating part of the flow variables ,u v  and 

, ,x yH H T  as the sum of steady and fluctuating 

components. 
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      where,
00 0 0 0, , , ,x yU V H H   and 

11 1 1 1, , , ,x yU V H H   are respectively, the real and 

fluctuating parts of the flow variables. 

 
Steady Parts 
     To find the solutions of the equations given in (1)-(5), 

we now introduce the expressions given above for ,u v  

and , ,x yH H T   following equations for  the steady mean 

parts of the flow are obtained 
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The boundary conditions to be satisfied by the above 

system of equations are 
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      Solutions of equations (9)-(14) are obtained using 

finite difference method together with Gaussian 

elimination technique.  From this we also have 
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    The values obtained by the functions 

0 00 0 0, , , ,x yU V H H    are then used in oscillating part of 

the problem obtained in  the following section. 

 

Oscillating Parts 
       In a similar manner discussed above the equations 
for the oscillating flow may be obtained as 

 

1 1 1 0
2

U Y U V

Y Y




  
  

  
                                                    (17) 

1 1 0
1 0 0 0 1 1

2 2

U Y U Y U
i U U V U V U

Y Y
 



     
       

     
        

        1 1

0 0 0

2

1

2 2

x x

x y x

H HU Y
i S H H H

Y Y
 



    
      

   

 

         0

1 1 1
2

x

y x

HY
H H

Y


 
   

  

                      

(18) 

1 1 1 0
2

x x yH H HY

Y Y




  
  

  
                                      

(19) 

01 1

0

1
1 0 0 0 1 1

2 2

xx x

x x

HH HY Y U
i H U V U V U iH

Y Y
 

 

     
        

      

  
  1

0 0 1 1

2

1 0

2

1

2 2

x

y x y x

HY U Y U
H H H H

Y Y Pm Y

    
       

     
    

(20) 
2

1 1 0 1
1 0 0 0 1 1 2

1
(21)

2 2 Pr

Y Y
i U V U V U

Y Y Y

   
 



      
        

      

 
 

The boundary conditions are as follows: 
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Solutions of equations (17)-(21) satisfying the conditions 
given in (22) are obtained employing the finite difference 

method for all   that discussed in the preceding section 

for the steady part of the problem.  

     Now we find the values of the physical quantities, like, 

the skin friction , rate of heat transfer  and the current 

density H at the surface of plate.  

       Here, the expressions for amplitudes and phases 

angles of the skin friction, rate of heat transfer and 

current density  are given as below: 
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      where    , , ,r i r i    and  ,r iH H  are 

corresponding real and imaginary parts of the 

coefficients of skin friction, rate of heat transfer and 

current density at the surface. Recently this method has 

been used successfully by Roy and Hossain [31], Jaman 

and Hossain [32]. 
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Fig 2. Numerical solution of phase angle of heat transfer, 

skin friction and current density for different values Pr = 

0.001, 0.015, 0.025, 0.054 while  =1.0, Pm = 1.0 and S 

=0.1 

 

        Further solutions are obtained for small and large 

values of . Solutions for small   are obtained using the 

regular perturbation method. Finally matched asymptotic 

solutions for large  also obtained using the appropriate 

scaling factors. Details of the solutions are excluded here 

to economize the space of the journal. However, 

asymptotic solution thus obtained for large  are 

presented here are in terms of local skin friction, current 

density and rate of heat transfer as given below: 
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where ( 1) / 2s i   and 00 ,dc are known values 

from steady solution. 

0.1. 

 

 

 

 
 

Fig 3. Amplitude of heat transfer, skin friction and 

current density for different values Pm=0.1, 0.3, 0.5, 

while 5.0  and S=0.02, Pr=0.1. 

 

       By separating real and imaginary part from equation 

(24), we can find the numerical values amplitudes and 

phases angle of coefficients of skin friction, heat transfer 

and current density for large  from the following 

relations by following Hossain and Banu [27]. 
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The solution obtain by these relations for large   is 

given in Figures 2 and 3. 
 

 

2. RESULTS AND DISCUSSIONS 
     In the present problem magnetohydrodynamics mixed 

convection flow past a magnetized vertical plate when 

magnetic field, free stream velocity and surface 

temperature oscillate has been investigated numerically. 

For numerical solution of the dimensionless equation 
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that govern the flow we have employed the finite 

difference approach with Gaussian elimination technique 

for entire value of  and asymptotic series solution for 

small and large value of  .  

 

 

 

 
 

Fig 4. Transient skin friction rate of heat transfer, and 

current  

density for different values  =1.0, 3.0, 5.0 while

=10.0 and S=0.1,Pm=0.1, Pr=0.015 and   =0.05 

 

      The rate of heat transfer, skin friction and current 

density in terms of amplitude is exhibited in Figures 

2(a)-2(c).  It is observed that with the increase of Prandtl 

number Pr the amplitude of rate of heat transfer, skin 

friction and current density decreases. The variation in 

magnetic Prandtl number Pm against  on the amplitude 

of rate of heat transfer, skin friction and current density 

keeping other parameters constant is depicted in Figures 

3(a)-3(c) by two methods finite difference method and 

perturbation technique. It is interesting to observe that 

the both methods are within good agreement. 

 

 

 

 
 

Fig 5. Transient skin friction rate of heat transfer, and 

current density for different values  =1.0, 2.0, 10.0,  

while =1.0 and  S=0.21, Pm=0.1, Pr=0.015 and 

 =0.05 

 

       Figures 4(a)-4(c) displays the transient skin friction, 
rate of heat transfer and current density for different 

values of mixed convection parameter  . From these 

figures it is noted that the transient skin friction, rate of 

heat transfer and current density increases with the 

increase of mixed convection parameter . The effects 

of different values of dimensionless parameter   on 

transient skin friction, rate of heat transfer and current 

density are given in Figures 5(a)-5(c). It is observed that 

with the increase of dimensionless parameter $\xi$ the 

transient skin friction decreases and transient rate of heat 

transfer and current density increases. 

 

4. CONCLUDING REMARKS 
     A numerical simulation is performed to analyze the 
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results of some physical quantities those are very 

important to explain physical phenomena in heat transfer 

and boundary layer theory. Based on the results and 

discussion the following conclusions have been drawn. 

       It is concluded that with the increase of Prandtl 

number Pr the phase angle of rate of heat transfer, skin 

friction and current density decreases. The very poor role 

of magnetic Prandtl number Pm for the case of skin 

friction and heat transfer in terms of amplitude is seen but 
this is very prominent in the case of current density. 

 

     It is also noted that the transient skin friction, rate of 

heat 

transfer and current density increases with the increase of 

mixed convection parameter  . The increase in the 

dimensionless parameter   the transient skin friction 

decreases and transient rate of heat transfer and current 

density increases. In this investigation the results are 

compared by two methods finite difference method and 

perturbation technique, it is seen that the results obtained 

by both methods are within good agreement. 
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